Facebooktwittergoogle_plusredditlinkedinmail

Deep-learning-based systems are becoming pervasive in automotive software. So, in the automotive software engineering community, the awareness of the need to integrate deep-learning-based development with traditional development approaches is growing, at the technical, methodological, and cultural levels. In particular, data-intensive deep neural network (DNN) training, using ad hoc training data, is pivotal in the development of software for vehicle functions that rely on deep learning. Researchers have devised a development lifecycle for deep-learning-based development and are participating in an initiative, based on Automotive SPICE (Software Process Improvement and Capability Determination), that’s promoting the effective adoption of DNN in automotive software.

Read article